Quantum Chemistry and Physics have been identified as key applications for quantum computers and quantum algorithms have been designed to solve the Schrödinger equation using the wavefunction formalism. In this context, we have proposed a VQE-type algorithm specifically for the Hubbard model, particularly in the strongly interacting limit. However, the wavefunction formalism is still limited to small systems, as their size is constrained by the number of available qubits. Computations on larger systems primarily rely on mean-field-type approaches such as density functional theory, for which no quantum advantage has been envisioned so far. In this seminar, we will also challenge this assumption by proposing a counter-intuitive mapping from the non-interacting to an auxiliary interacting Hamiltonian that may provide the desired advantage.